УДК 523.947-337+523.62-726

ОТКРЫТЫЕ МАГНИТНЫЕ ПОЛЯ НА СОЛНЦЕ И ХАРАКТЕРИСТИКИ СОЛНЕЧНОГО ВЕТРА У ЗЕМЛИ

© 2011 г. В. Н. Обридко, Б. Д. Шельтинг, И. М. Лившиц

Учреждение Российской академии наук Институт земного магнетизма, ионосферы и распространения радиоволн РАН им. Н.В. Пушкова, Троицк Московской обл., Россия Поступила в редакцию 19.08.2010 г.; принята в печать 20.09.2010 г.

Показано, что характеристики магнитного поля в солнечном ветре определяются областью в корональной дыре на уровне 1.1–1.4 радиуса Солнца, где силовые линии являются радиальными уже на малых высотах. Расширяясь далее в узком "сопле" или "воронке" (funnel), силовые линии к высоте 2.5 радиусов Солнца становятся радиальными всюду в униполярной области. Таким образом, традиционная схема сопоставления характеристик межпланетного магнитного поля у Земли с точкой гелиопроекции на Солнце не совсем корректна. Она дает хорошие результаты при сопоставлении знака поля и секторной структуры. Однако абсолютные значения поля формируются в более широкой зоне. Учет этого эффекта позволяет согласовать значения полей на Солнце и в межпланетном магнитном поле и объяснить эффект отсутствия слабых полей вблизи нейтральной линии межпланетного магнитного поля (двухвершинность распределения).

1. ВВЕДЕНИЕ

В настоящей работе мы провели сравнение данных о межпланетном магнитном поле с расчетами на основе наблюдений на Солнце. Использовались данные OMNI для компонент межпланетного магнитного поля с сервера NSSDC (http://nssdc.gsfc.nasa.gov/omniweb).

В настоящее время имеется 3 нерешенных проблемы в сопоставлении полей на Солнце с полем вблизи Земли [1, 2]:

1. Низкая корреляция абсолютных значений при высокой корреляции знаков. Дело в том, что выполняемые сравнения радиальных компонент поля на Солнце в гелиопроекции Земли и на силовой линии вблизи Земли дают обычно очень высокие значения коэффициентов корреляции. Однако при внимательном рассмотрении становится ясно, что это высокая корреляция знаков полей, а не их величин (рис. 1; определение знаков полей на Солнце и у Земли противоположное). По существу мы видим просто два облака точек в двух антисимметричных квадрантах. Когда сравниваются абсолютные величины, оба облака перемещаются в первый квадрант, и корреляция исчезает. С учетом знака корреляция составляет 0.93, а для абсолютных величин - 0.65.

2. Вторая загадка может быть условно названа загадкой двухвершинности. Если мы построим распределение значений поля на поверхности источника на Солнце в точке гелиопроекции Земли и в солнечном ветре вблизи Земли, мы получим совершенно разные распределения (рис. 2). В отличие от распределения полей на поверхности источника, гистограмма для межпланетного магнитного поля (ММП) носит ярко выраженный двухвершинный характер. Это различие сохраняется для всех компонент, а также при использовании данных с более высоким временным разрешением (вплоть до среднечасовых значений). Это различие, вообще говоря, совершенно непонятно, поскольку по основной концепции спокойный солнечный ветер должен повторять с точностью до масштабного множителя значения поля на поверхности источника в гелиопрекции Земли.

3. Согласно основной концепции, магнитное поле в спокойном солнечном ветре возникает из магнитного поля на поверхности источника в результате радиального расширения. В таком случае поле в солнечном ветре у Земли очень легко рассчитать путем умножения на множитель $(R_{SS}/R_E)^2$ (где R_{SS} и R_E – сответствующие гелиоцентрические расстояния до поверхности источника на Солнце и до Земли). Этот множитель с учетом пересчета из микротесла в нанотесла составляет 0.142. После умножения магнитного поля на поверхности источника на Солнце B_{SS} на этот множитель, согласно основной концепции, расчетные и измеренные значения должны быть близки, и мы должны получить уравнение регрессии с масштабным множителем, равным единице. Реально вычисленные значения

ОБРИДКО и др.

Рис. 1. Корреляция значений B_X с полем на поверхности источника B_{SS} с учетом знака этих величин (второй и четвертый квадранты) и сопоставление абсолютных величин (вверху справа, первый квадрант). Временной сдвиг — 4 дня.

Рис. 2. Гистограмма распределения поля на поверхности источника *B*_{SS} (вверху) и ММП вблизи Земли (внизу).

очень малы (рис. 1 и 2) и расчетные значения нужно умножать на дополнительный масштабный множитель больше единицы, чтобы измеренные и вычисленные значения были сравнимы по величине.

Отметим, что все три проблемы имеются в стандартном методе расчета, в котором предполагается, что вплоть до поверхности источника магнитные поля свободны от токов и имеют потенциальную природу. Поэтому на больших высотах остаются только первые гармоники, главной из которых является поле диполя. Здесь закон падения поля начиная с некоторой высоты близок к дипольному: R^{-3} . Затем режим резко меняется на структуру, полностью управляемую истекающим из Солнца потоком, силовые линии оказываются полностью открыты, и поле зависит от расстояния как R^{-2} . Поле в гелиосфере и у Земли принято связывать с полем в точке гелиопроекции Земли. При этом игнорируется тот факт, что, хотя поле на поверхности источника полностью открытое, все эти поля на более низких высотах укоренены в корональных дырах.

В работе [3] корональные дыры отождествляются с областями открытого поля, и оба термина используются попеременно. Однако ситуация не так проста. Даже новейшие расчеты не подтверждают полной идентичности этих явлений [2, 4, 5]. Взаимосвязь между корональными дырами и областями открытого поля, хотя и понятна в принципе, все же содержит ряд неясных моментов. В частности, Степанян [4] отмечает различие в пространственном распределении корональных дыр и крупномасштабных (фоновых) магнитных полей в солнечном цикле.

Высокоскоростные потоки, несомненно, связаны с корональными дырами и границами секторной структуры ММП [6–10]. Однако они охватывают значительно бо́льшую площадь, чем корональные дыры (КД). Восточная граница высокоскоростных потоков солнечного ветра расположена в переходной зоне шириной $40^{\circ}-50^{\circ}$ между КД и границей секторной структуры ММП. От 75% до 90% восточных границ высокоскоростных потоков находятся на расстоянии $25^{\circ}-30^{\circ}$ к западу от секторной структуры ММП.

Обычно считается, что КД расширяются "сверхрадиально" [11–13], т.е. силовые линии в этой области далеко отклоняются от радиального направления, характерного для магнитного монополя. Это обусловлено тем, что силовые линии на всей поверхности источника берут начало в открытых полях, связанных с КД, которые занимают лишь небольшую площадь в нижней короне и хромосфере. Однако ситуация опять не так проста. На самом деле, сверхрадиальное расширение в центральной части больши́х корональных дыр начинается на высоте около 1.4 R_{\odot} (где R_{\odot} – солнечный радиус) от центра Солнца. Ниже этого уровня поле в КД строго радиально в отличие от окружающих областей замкнутого поля [2, 5, 14].

Таким образом, мы приняли схему, аналогичную предложенной Вангом и др. для объяснения радионаблюдений корональных дыр и представленной в их работе на рис. 2.

Область между замкнутыми полями занята открытым магнитным полем (ОМП). В центре области ОМП до высоты 0.4–0.6 R_{\odot} находится область радиального поля (РП), которая и наблюдается как корональная дыра в рентгеновском, крайнем ультрафиолетовом излучении и в линии HeI 10830 Å [2, 5]. В этой области регистрируется усиление радиоизлучения в метровом и декаметровом диапазонах [15]. На периферии ОМП вблизи замкнутого поля можно наблюдать сверхрадиальное расширение и, таким образом, мы имеем две зоны ОМП до высоты 0.4 R_{\odot} — центральную область РП и периферическую переходную зону.

2. ИСПОЛЬЗОВАННЫЕ ДАННЫЕ И МЕТОДЫ РАСЧЕТА

Здесь и далее мы пользовались данными SOHO в fits-формате 1024×1024 из интернета (http://sohowww.nascom.nasa.gov/cgi-bin/summary query form). Для детального анализа использовались данные с интернет-сайта http:// umbra.nascom.nasa.gov/eit/eit-catalog.html, ofpaботанные с помощью программы Solarsoft program eit prep, полученной с сайта fttp://sohowww.nascom.nasa.gov/solarsoft/soho/eit/idl/anal/eit prep. рго. Был составлен каталог корональных дыр за 1998-2009 гг. Первоначально с начала 1998 г. по конец 2002 г. КД мы выбирали по форме и конфигурации (простая овальная форма, вдали от других КД) и положению на диске (вблизи центра диска). Данные взяты из "Solar Geophysical Data" ("Coronal Hole Daily Maps (NSO/RP)", ежедневные данные - естественно, с учетом погодных условий). Список КД с 2003 г. практически по сегодняшний день (октябрь 2009 г.) был взят с сайhttp://www.dxlc.com/solar/coronal holes.html "Coronal hole history (since late October 2002)". Расчеты проводились для всех КД, прохождение которых по диску не сопровождалось корональными выбросами массы типа гало. Данные о корональных выбросах массы типа полного гало были взяты из каталогов. Гопалсвами (http://cdaw.gsfc.nasa.gov/CME_list/HALO/halo. html).

После сравнения мы оставили окончательно для работы 338 КД. В таблице показано распределение КД в нашем каталоге по годам.

Распределение числа корональных дыр по годам

Год	Число КД
1998	14
1999	28
2000	23
2001	28
2002	37
2003	46
2004	39
2005	25
2006	27
2007	31
2008	22
2009	18

Использовались снимки Солнца, полученные на SOHO в длине волны 284 Å. В качестве границ корональной дыры использовалось значение яркости 0.25 среднегодовой яркости Солнца в этой длине волны. Более подробно процедура получения данных описана в работе [14]. Для сопоставления со структурой магнитного поля использовались данные Солнечной обсерватории им. Джона Вилкокса (WSO). Методика расчетов описана неоднократно (см., например, [16, 17]), использовались классические коэффициенты разложения, т.е. гипотеза радиальности поля на фотосфере не вводилась. Все расчеты выполнены с 10 гармониками разложения.

3. СОПОСТАВЛЕНИЕ С ПОЛЕМ, УСРЕДНЕННЫМ НА ПРОТЯЖЕННЫХ УЧАСТКАХ СОЛНЦА

Нами было высказано предположение, что природа наблюдаемой двухвершинности состоит в том, что знак ММП и его величина формируются в разных участках на поверхности Солнца. Знак определяется секторной структурой, которая в свою очередь отражает смену знака B_{SS} на гелиопроекции Земли. А вот величина магнитного поля интегрируется внутри всего сектора одного знака.

С целью проверки этого предположения нами было выполнено усреднение ежедневных расчетов B_{SS} внутри круга радиуса R_0 вокруг точки гелиопроекции Земли для 2005 г. Расчеты были выполнены для $R_0 = 0^\circ$, 15°, 25°, 40° и 70°. Полученные значения затем сопоставлялись с ежедневными значениями B_L со сдвигом по времени 4 дня. Корреляция оказалась довольно высокой (~0.70)

вплоть до $R_0 = 40$. При дальнейшем увеличении R_0 корреляция резко падает. Это и понятно, потому что верхняя граница гелиосферного токового слоя в 2005 г не превышала 40°, и при $R_0 > 40^\circ$ мы выходим за пределы униполярного сектора. Главное, что показала эта процедура, это то, что двухвершинность распределения возникает уже на Солнце, причем асимметрия совпадает с наблюдаемой у Земли асимметрией, с учетом противоположного определения направления оси X на Солнце и в ММП (рис. 3). В то же время гистограмма поля на поверхности источника в точке гелиопроекции Земли ($R_0 = 0$) остается одновершинной, как и на рис. 2, и соответствует простому гауссовому распределению. Конечно, это не единственное возможное объяснение. К подобному же эффекту исчезновения полей вблизи нулевой точки могут провести разнообразные нестационарные эффекты и разрывные неоднородности в солнечном ветре вблизи нейтральной линии. Заметим, что на рис. 2 и 3 значения по оси абсцисс даны непосредственно в мкТ для поверхности источника и в нТ в ММП. При сведении этих данных в одну систему необходимо значения на Солнце умножить на 0.142. Тогда видно, что расчетные значения поля остаются заниженными, и усреднение по протяженному участку не улучшает ситуацию.

4. СОПОСТАВЛЕНИЕ С ПОЛЕМ, УСРЕДНЕННЫМ В ПРЕДЕЛАХ КОРОНАЛЬНОЙ ДЫРЫ

С целью устранить отмеченное выше несоответствие мы провели сравнение ММП со значениями усредненного магнитного поля при разных условиях усреднения. В основу этих расчетов было положено представление о том, что наиболее темная часть КД соответствует области, где поле становится радиальным уже на высотах $1.1-1.4 R_{\odot}$. Эта ситуация проиллюстрирована на рис. 4, где использован снимок Солнца на аппаратуре SOHO/LASCO-C2, полученный 10 марта 2001 г. В экваториальной области на западном лимбе наблюдалась КД. На этот снимок наложены силовые линии магнитного поля, вычисленные в потенциальном приближении. Видно, что в центральной наиболее темной части КД силовые линии радиальны уже на очень низком уровне в короне.

Было реализовано 4 варианта расчетов:

1. Среднее значение поля на уровне 1.1 R_{\odot} в темной части КД. Эта и две последующие процедуры были реализованы для всех (338) КД каталога. Было выполнено сравнение с магнитным полем и плотностью с транспортным временем 3 и 4 дня.

2. Поле на уровне 2.5 R_{\odot} (т.е. на поверхности источника) в темной части КД.

Рис. 3. Гистограмма распределения усредненного по сектору поля на поверхности источника (вверху) и ММП вблизи Земли (внизу).

3. Поле в центре диска. Здесь в каждый день наблюдения КД вычислялось магнитное поле на поверхности источника в точке гелиопроекции Земли.

4. Среднее поле на разных уровнях для всех КД 2005 г. Уровень, для которого производились вычисления магнитного поля, менялся от 1 до 2.2 R_{\odot} .

Для численного сравнения солнечных и межпланетных полей, измеренных вблизи Земли (данные OMNI), вычисленные средние значения магнитного поля пересчитывались на расстояние 1 а.е. по модели радиального распространения потока от Солнца к Земле. Для этого средние значения магнитного поля B_r умножались на 0.0274, если оно было рассчитано первоначально на высоте 1.1 R_{\odot} , и на 0.142, если оно было рассчитано на поверхности источника на высоте 2.5 R_{\odot} (рис. 5).

Во всех случаях 1—3 сохраняется высокая корреляция измеренных и вычисленных значений. В среднем корреляция составляет порядка 0.8, а для ряда лет она даже выше. Однако данного факта не следует переоценивать, поскольку это все та же корреляция знаков, о которой говорилось выше, и которая представяет собой по существу корреляцию секторных структур на Солнце и в ММП. Именно поэтому в конце периода корреляция несколько падает, поскольку в минимуме гелиосферный токовый слой становится плоским и сектора исчезают. Значения корреляции при

Рис. 4. Корональная дыра на восточном лимбе и силовые линии магнитного поля.

Рис. 5. Коэффициент корреляции между вычисленным в трех вариантах магнитным полем у Земли и измеренным значением: первый вариант — квадратики (D), — второй вариант — кружки (H), — третий вариант — трегольники (L).

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 88 № 3 2011

Рис. 6. То же, что на рис. 5, для калибровочного коэффициента.

транспортном времени 3 дня несколько ниже, и в дальнейшем мы использовали только транспортное время 4 дня.

Гораздо сильнее различие между этими тремя случаями при вычислении калибровочного коэффициента. Для приведения расчетных и измеренных данных к одному масштабу этот коэффициент должен быть близок к единице. Оказалось, что во всех случаях при использовании начального магнитного поля на уровне 2.5 R_{\odot} (варианты 2 и 3) коэффициент пересчета от приведенных к 1 а.е. значений солнечного магнитного поля к измеренным ММП существенно выше ожидаемой единицы. В то же время начальные расчеты для уровня 1.1 R_{\odot} (вариант 1) дают требуемое значение в среднем 0.93 (рис. 6; на этом рисунке отрицательные значения коэффициента пересчета связаны с

Рис. 7. Зависимость калибровочного коэффициента в корональных дырах от высоты Нанесена также аппроксимирующая кривая.

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 88 № 3 2011

различием в определении положительного направления магнитного поля на Солнце и в ММП).

Четвертая процедура выполнена нами с целью уточнения высоты, начиная с которой силовые линии становятся полностью открытыми в КД. Если ранее мы использовали высоту 1.1 R_{\odot} , исходя из предполагаемого уровня излучения линии 284 Å, в этой процедуре мы вычислили калибровочный коэффициент с переменной высотой "поверхности источника". Оказалось, что высота, при которой угловой коэффициент в уравнении регрессии становится близким к единице, составляет 1.2–1.4 R_{\odot} (рис. 7).

5. ВЫВОДЫ

Магнитное поле, приходящее к Земле с солнечным ветром, формируется не в точке гелиопроекции, а в более широкой области, захватывающей всю зону от -40° до +40°. При этом определяющую роль в формировании магнитного поля солнечного ветра играют КД, располагающиеся в центрах заливов нейтральной линии определенного знака.

Поскольку результирующее магнитное поле солнечного ветра у Земли в результате определяется потоками, исходящими из широкой области на Солнце, разброс абсолютных значений магнитного поля солнечного ветра очень велик, что и приводит к низким коэффициентам корреляции абсолютных величин.

Поскольку магнитное поле формируется в широкой области, возникает естественный дефицит значений поля вблизи нейтральной линии (двухвершинность) в отличие от того, что мы получали при сравнении с полем в точке гелиопроекции.

Асимметрия распределения ММП имеет солнечное происхождение, и ее знак согласуется со знаком распределения поля на Солнце при усреднении по протяженной области.

Весь высокоскоростной поток формируется в КД на уровне ее основания. Характеристики солнечного ветра определяются на том уровне, где в КД силовые линии радиальны. КД играет роль сопла, из которого и выбрасывается весь поток. К аналогичным выводам пришли авторы работ [18–21], сравнивая измеренные на аппаратуре SOHO/SUMER доплеровские скорости в эмиссионных линиях SiII (153.3 нм), CIV (154.8 нм) и NeVIII (77.0 нм) с экстраполированным магнитным полем. Они показали, что солнечный ветер истекает из узких "воронок" (funnel) с высот около 20 Мм.

Работа была поддержана Российским фондом фундаментальных исследований (код проекта 08-02-00070).

СПИСОК ЛИТЕРАТУРЫ

- О. И. Бугаенко, И. А. Житник, А. П. Игнатьев и др., Изв. Крымск. асторофиз. обсерв. 100, 136 (2004).
- E. I. Mogilevsky, V. N. Obridko, and N. S. Shilova, Solar Phys. 176, 107 (1997).
- Y.-M. Wang, S. H. Hawley, and N. R. Sheeley, Science, 271, 464 (1996).
- 4. Н. Н. Степанян, Изв. РАН, сер. физ. **59**, 63 (1995).
- V. N. Obridko, in: Advances in Solar Connection with Interplanetary Phenomena, Proc. Third SOLTIP Symp., Beijing, China, October 14–18, 1996, eds X.Feng, F.Wei, M.Dryer (Beijing: Intern. Acad. Publs, 1998), p. 41.
- В. Н. Обридко и Б. Д. Шельтинг, Геомагн. и аэрон. 27, 197 (1987).
- В. Н. Обридко и Б. Д. Шельтинг, Геомагн. и аэрон. 27, 660 (1987).

- 8. В. Н. Обридко и Б. Д. Шельтинг, Кинемат. и физ. небесн. тел 4, 29 (1988).
- 9. V. N. Obridko and B. D. Shelting, Solar Phys. **124**, 73 (1989).
- В. Н. Обридко и Б. Д. Шельтинг, Астрон. журн. 67, 890 (1990).
- 11. В. А. Kovalenko, *Солнечный ветер* (М.: Наука, 1983).
- 12. Y.-M. Wang and N. R. Sheeley, Jr., Astrophys. J. **355**, 726 (1990).
- 13. Y.-M. Wang, N. R. Sheeley, Jr., and A. G. Nash, Nature **347**, 439 (1990).
- V. N. Obridko, B. D. Shelting, I. M. Livshits, and A. B. Asgarov, Solar Phys. 260, 191 (2009).
- Zh. Wang, M. R. Kundu, and H. Yoshimura, in: Solar and stellar coronal structure and dynamics, Proc. Ninth Sacramento Peak Summer Symp., Sunspot, NM, August 17–21, 1987, A89–20526 06–92, (Sunspot, NM: National Solar Observatory, 1988), p. 458.
- J. T. Hoeksema and P. H. Scherrer, Solar Magnetic Fields – 1976 through 1985, UAG Report No. 94 (Boulder, USA: WDCA, 1986).
- 17. V. N. Obridko and B. D. Shelting, Solar Phys. 187, 185 (1999).
- 18. C.-Y. Tu, C. Zhou, E. Marsch, *et al.*, Science **308**, 519 (2005).
- C.-Y. Tu, C. Zhou, E. Marsch, et al., in: Connecting Sun and Heliosphere Whistler, Proc. Solar Wind 11 – SOHO 16, Canada, 12-17 June 2005, ESA SP-592 (Europ. Space Agency, 2005), p. 18.
- 20. J.-S. He, C.-Y. Tu, and E. Marsh, Solar Phys. **250**, 147 (2008).
- 21. H. Tian, E. Marsch, W. Curdt, and J.He, e-Print archiv:0909.0739v1 [astro-ph.SR] (2009).